Central Nervous System Modeling with iPSC-Derived Cells

Bryan Black and Lucas Thal will discuss their experiences screening hiPSC-derived neural cells to understand chronic pain and neuroinflammation.

Event Details:Central Nervous System Modeling with iPSC-Derived CellsDate(s):

FREE Webinar

Tuesday, July 20, 2021
2:30 - 4:00 PM, Eastern Time

Register Now

Neural cells differentiated from human induced pluripotent stem cells (hiPSCs) provide researchers with the opportunity to study processes that otherwise lack physiologically relevant models. Additionally, high-throughput phenotypic screening of hiPSC-derived cells reduces the need for pre-clinical screening and improve drug discovery and development. In this webinar brought to you by BrainXell, Bryan Black and Lucas Thal will discuss their work screening hiPSC-derived neurons and microglia and the benefits of modeling the central nervous system with hiPSCs.

Topics to be covered

Register Now

Meet the Speakers:

Bryan James Black, PhD
Assistant Professor, Biomedical Engineering
Francis College of Engineering
University of Massachusetts

Lucas Thal, PhD
Scientist II
PhenoVista Biosciences

Sponsored by

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies