Characterizing the Imprintome

Three techniques for identifying the collection of maternal and paternal genes silenced in offspring

Written byAmber Dance
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© ISTOCK.COM/OLIANA/ANNA_LENIThroughout the genomes of mammals and plants, certain genes carry marks that indicate whether they came from mom or dad. Typically, these marks are methyl groups that regulate gene expression so that one parent’s allele is selectively expressed. Together, these imprinted genes make up the imprintome.

Scientists used to search for imprinted genes one by one, but thanks to modern sequencing techniques, they can now scan entire genomes. The precise size of the imprintome is uncertain. Estimates suggest there are approximately 100 to 150 or so imprinted genes in humans and in mice, and 90 or more in the plant model Arabidopsis thaliana. Many imprinted regions of the genome can contain sequence variants linked to human diseases, such as diabetes. Because only one copy of an imprinted gene is expressed, loss-of-function mutations are more likely to cause problems in an imprinted situation.

Identifying a full list of imprinted genes for humans and model organisms will give scientists a springboard to characterize the mechanisms and functions of imprinting, says Ian Morison of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies