Characterizing the Imprintome

Three techniques for identifying the collection of maternal and paternal genes silenced in offspring

Written byAmber Dance
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© ISTOCK.COM/OLIANA/ANNA_LENIThroughout the genomes of mammals and plants, certain genes carry marks that indicate whether they came from mom or dad. Typically, these marks are methyl groups that regulate gene expression so that one parent’s allele is selectively expressed. Together, these imprinted genes make up the imprintome.

Scientists used to search for imprinted genes one by one, but thanks to modern sequencing techniques, they can now scan entire genomes. The precise size of the imprintome is uncertain. Estimates suggest there are approximately 100 to 150 or so imprinted genes in humans and in mice, and 90 or more in the plant model Arabidopsis thaliana. Many imprinted regions of the genome can contain sequence variants linked to human diseases, such as diabetes. Because only one copy of an imprinted gene is expressed, loss-of-function mutations are more likely to cause problems in an imprinted situation.

Identifying a full list of imprinted genes for humans and model organisms will give scientists a springboard to characterize the mechanisms and functions of imprinting, says Ian Morison of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH