Circulating Fetal Cells Sequenced for Prenatal Testing Study

Trophoblasts, collected from the mother during a blood draw, can determine fetal genetic abnormalities currently diagnosed through amniocentesis or chorionic villi sampling.

Written byEmily Makowski
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, ANDY

Trophoblasts, cells present during development in the fetus and placenta that also circulate in a pregnant woman’s bloodstream, could potentially be used for noninvasive prenatal diagnosis, according to a paper published November 27 in The American Journal of Human Genetics.

A team led by geneticist Arthur Beaudet of Baylor College of Medicine obtained blood samples from pregnant women and separated out trophoblasts for analysis. Using whole-genome sequencing, they detected fetal genetic abnormalities such as trisomies, the presence of an extra chromosome, with high accuracy. This technique could have the potential to replace more invasive tests such as amniocentesis or chorionic villi sampling, and it appears to be more accurate than a similar procedure that tests cell-free DNA in the mother’s bloodstream.

The new paper “provides the most comprehensive demonstration to date of the potential of approaches based on circulating trophoblasts,” Benjamin Thierry, a biomedical engineer at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas