Circulating Tumor Cells Traverse Tiny Vasculature

Clusters of tumor-derived cells can pass through narrow channels that mimic human capillaries, scientists show in vitro and in zebrafish.

Written byTanya Lewis
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A stained cluster of cancer cells passes through a 7-μm channel in vitro.PNAS, S.H. AU ET AL.Clusters of circulating tumor cells (CTCs) may play a larger role in cancer metastasis than previously thought. Researchers at Massachusetts General Hospital have now shown that these clusters can squeeze through square microfluidic channels just 7 microns (μm) across. The team’s findings were published today (April 18) in PNAS.

“There’s a common belief in the field that even single CTCs traversing through capillary beds would destroy the majority of them through physical shearing,” Edward Cho of Spectrum Genomics wrote in an email to The Scientist. This study “demonstrates new evidence that clusters of CTCs may have a mechanism to prevent shearing as they traverse through small capillaries, and thus may have greater metastatic potential than previously thought,” added Cho, who was not involved in the work.

Most cancer deaths are caused by tumors metastasizing to different organs. Traditionally, clusters of these cells were thought to be too large to pass through capillaries, instead getting stuck and forming blood clots. Yet, more recently, these clusters have been detected in blood drawn from cancer patients. “If ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies