Combatting Viruses with RNA-Targeted CRISPR

Scientists reengineer a Cas9 enzyme that naturally targets bacterial RNA to stymie hepatitis C inside human cells.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Francisella tularensis WIKIMEDIA, CDCThe list of potential uses for the CRISPR/Cas system grows longer by the day. Now fighting viruses may soon be added to that list, according to a study published today (April 27) in PNAS. Microbiologist David Weiss and immunologist Arash Grakoui of Emory University in Atlanta and their colleagues used a version of the Cas9 enzyme from the bacteria Francisella novicida to bind hepatitis C virus (HCV) RNA and prevent the pathogen from replicating inside human cells.

Last summer, another group showed that CRISPR/Cas9 could be used to seek out and excise HIV DNA from the genomes of latently-infected cells. The Emory team later found that F. novicida Cas9 (FnCas9) blocks HCV in a different way; it binds viral RNA in the cytosol such that, “if there are off-target effects, it wouldn’t be editing the genome,” said study coauthor Aryn Price, a graduate student in Grakoui’s lab.

FnCas9 also differs from other Cas enzymes because it doesn’t cut up RNA, it creates a roadblock for the proteins trying to copy RNA or translate it into viral proteins. Although this study is the first to target CRISPR/Cas9 to RNA within human cells, members of Jennifer Doudna’s lab at the University of California, Berkeley, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio