Competition and Cooperation of Cheese Rind Microbes Exposed

Transposon mutagenesis give scientists a rare look at the most important interactions within microbial communities.

Written byAshley Yeager
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: ©ISTOCK, ru_

Bits of Brie are scattered about on petri dishes in Rachel Dutton’s microbiology lab at the University of California, San Diego. The distinctive smells they give off come from the cheeses’ rinds—specifically, the multitude of microbes blooming on the crumbly or waxy surface of the creamy curd.

“The cheese rind microbiome lets us study microbiomes in general,” Manon Morin, a postdoc in Dutton’s lab, tells The Scientist. “We can grow each member of the cheese rind microbiome in the lab individually and then recombine them one by one to study their interactions. We can essentially construct and deconstruct the cheese rind microbiome.”

Microbial communities exist just about everywhere on Earth, from our skin and our gut to the soil and the ocean, and play an integral role in human health and disease. Yet scientists have struggled to cultivate many of Earth’s microorganisms in the lab. Cheese, by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH