Competition and Cooperation of Cheese Rind Microbes Exposed

Transposon mutagenesis give scientists a rare look at the most important interactions within microbial communities.

Written byAshley Yeager
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: ©ISTOCK, ru_

Bits of Brie are scattered about on petri dishes in Rachel Dutton’s microbiology lab at the University of California, San Diego. The distinctive smells they give off come from the cheeses’ rinds—specifically, the multitude of microbes blooming on the crumbly or waxy surface of the creamy curd.

“The cheese rind microbiome lets us study microbiomes in general,” Manon Morin, a postdoc in Dutton’s lab, tells The Scientist. “We can grow each member of the cheese rind microbiome in the lab individually and then recombine them one by one to study their interactions. We can essentially construct and deconstruct the cheese rind microbiome.”

Microbial communities exist just about everywhere on Earth, from our skin and our gut to the soil and the ocean, and play an integral role in human health and disease. Yet scientists have struggled to cultivate many of Earth’s microorganisms in the lab. Cheese, by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies