CRISPR: No Cutting Required

Combining a modified Cas9 enzyme with an unrelated one derived from the immune system of the sea lamprey, researchers demonstrate yet another way to edit a single DNA nucleotide.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Nicked DNA being repaired by DNA ligaseWIKIMEDIA, MEDCHETaking advantage of a deaminase enzyme that introduces a single nucleotide change to DNA, researchers have created a modified CRISPR/Cas9 tool that avoids the generation of a deleterious double-stranded break, minimizes the potential for the introduction of collateral mutations, and does not require the addition of a DNA template. The new method, described today (August 4) in Science, is the second reporting of such a precise gene-editing tool.

“These deaminases solve the biggest problems with most previous genome-editing methods, including TALENSs, zinc finger nucleases, and Cas9, which is that the desired edits are in competition with random insertions an deletions via non-homologous end-joining (NHEJ),” wrote Harvard University’s George Church whose lab has also developed a deaminase-based base-editing tool. The newly described system “also “reduces the toxicity caused by double stranded breaks,” he added.

“It is always encouraging and helpful for the field when another lab replicates a major finding,” said David Liu, a professor of chemical biology at Harvard University whose lab recently described a similar technique using a different deaminase enzyme. “The authors here were also able to demonstrate that this gene editing strategy works in cells.”

With the CRISPR/Cas9 system, researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo