CRISPR: No Cutting Required

Combining a modified Cas9 enzyme with an unrelated one derived from the immune system of the sea lamprey, researchers demonstrate yet another way to edit a single DNA nucleotide.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Nicked DNA being repaired by DNA ligaseWIKIMEDIA, MEDCHETaking advantage of a deaminase enzyme that introduces a single nucleotide change to DNA, researchers have created a modified CRISPR/Cas9 tool that avoids the generation of a deleterious double-stranded break, minimizes the potential for the introduction of collateral mutations, and does not require the addition of a DNA template. The new method, described today (August 4) in Science, is the second reporting of such a precise gene-editing tool.

“These deaminases solve the biggest problems with most previous genome-editing methods, including TALENSs, zinc finger nucleases, and Cas9, which is that the desired edits are in competition with random insertions an deletions via non-homologous end-joining (NHEJ),” wrote Harvard University’s George Church whose lab has also developed a deaminase-based base-editing tool. The newly described system “also “reduces the toxicity caused by double stranded breaks,” he added.

“It is always encouraging and helpful for the field when another lab replicates a major finding,” said David Liu, a professor of chemical biology at Harvard University whose lab recently described a similar technique using a different deaminase enzyme. “The authors here were also able to demonstrate that this gene editing strategy works in cells.”

With the CRISPR/Cas9 system, researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH