Cutting the Wire

Optical techniques for monitoring action potentials

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

PROBING CHANNEL CONFORMATION: Combined patch-clamp and FRET measurements reveal the configuration of ion channels. As shown in the plot of the two measured signals (above, right), channels can adopt an “open” configuration in which no ions flow (region of low FRET efficiency but also low current, bottom left). ADAPTED FROM DIBYENDU SASMAL AND H. PETER LU

As your eyes scan this page, your brain is multitasking big-time. It’s engaged in a frenetic dialog with the muscles that control your eyes; neural pathways are flickering on and off to translate words into mental pictures; and memory circuits are working to store and retrieve information.

In every case, neurons are talking to each other in the language of action potentials: rapid electrical discharges across cellular membranes that propagate from one cell to the next like electricity in a wire, driven by ion flow through neuronal membrane channels.

Traditionally, researchers have used “patch clamping” to listen in on those conversations. The technique works a bit like a cell-size voltmeter. Using a finely controlled micromanipulator, neuroscientists position an ultrathin glass pipette against the membrane of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb