Delivering Silence

Using RNA viruses to silence genes could optimize tissue targeting while reducing toxicity.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Since the discovery of RNA interference almost 15 years ago, researchers have tried to devise effective ways to get these short gene-silencing transcripts inside cells. But techniques for in vivo delivery have fallen short. For therapies that require long-term gene knockdown, DNA viruses that insert the microRNA (miRNA) genes into the target cell's genome were the best bet. But that approach produced large numbers of miRNAs, which overloaded the miRNA-processing proteins in the nucleus and resulted in cellular toxicity. For short-term therapies, mature miRNAs encapsulated in liposomes or conjugated to cholesterol were used, but they have been difficult to target to a specific cell type.

Benjamin tenOever, a virologist at Mount Sinai School of Medicine in New York City, tried an unusual work-around: cytoplasmic RNA viruses. Researchers had assumed that RNA viruses wouldn't do the trick because the miRNA transcript never enters the nucleus, and thus couldn't be processed appropriately. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits