Designer Protein Acts as a Switch for Cellular Circuitry

Unlike biotech tools adapted from nature, the invention was entirely conceived by humans and represents one of the few proteins made from scratch in the lab.

Written byNicoletta Lanese
| 2 min read
LOCKR a de novo protein designed to serve as a molecular switch in cells

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: LOCKR, a synthetic protein complex, transforms from a locked state (background) to an open state when a molecular “key” (black) is inserted, thus exposing a bioactive peptide (yellow).
IAN HAYDON/UW MEDICINE INSTITUTE FOR PROTEIN DESIGN

Scientists have invented a synthetic protein designed to control the inner workings of cells. In a pair of papers, published yesterday (July 24) in Nature, the researchers demonstrate how the tool can be used to tweak gene expression, orchestrate protein binding events, and cue functional changes in the cell in response to environmental conditions.

“Cells receive stimuli, then have to figure out what to do about it. They use natural systems to tune gene expression or degrade proteins, for example,” says Bobby Langan, a coauthor of both studies and a former graduate student at the University of Washington in an announcement. The newly designed tool—named LOCKR for Latching, Orthogonal Cage/Key pRotein—fiddles with these inbuilt systems ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH