Discovering Novel Antibiotics

Three methods identify and activate silent bacterial gene clusters to uncover new drugs

Written bySandeep Ravindran
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MIXING IT UP: The bacterium Streptomyces coelicolor produces a variety of novel compounds when grown in combination with other bacterial species, and these interspecies interactions result in differences in colony development and pigment production when viewed under a microscope.mBio, doi:10.1128/mBio.00459-13, 2013

Antibiotic resistance is a major threat to global health, and researchers have struggled to identify new antimicrobial compounds. By the late 1990s, the bacterial reservoirs from which almost all clinically useful antibiotics had sprung appeared to run dry. As bacterial genome sequencing became more widespread in the last decade, however, researchers discovered many potential sources of new drugs hidden in these genomes. Now they just need to learn how to mine them.

Most antibiotics are derived from small molecules produced by bacteria, and the genes that synthesize, regulate, and export these molecules typically occur together in groups called biosynthetic gene clusters, which range in size from just a handful to several dozen genes. Sequencing efforts have revealed that the genomes of antibiotic-producing organisms, such as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo