Environmental Magnetite in the Human Brain

Mineral nanoparticles similar to those that have been associated with Alzheimer’s disease may enter the brain through the inhalation of polluted air.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In addition to angular, endogenous magnetite nanoparticles (left), researchers found spherical magnetite particles in postmortem human brains (middle) resembling those found in polluted air (right).COURTESY OF BARBARA MAHERIn more than three dozen postmortem human brains, scientists have detected nanoparticles of magnetite that they suspect came from the environment. The brain produces magnetite particles that are associated with Alzheimer’s disease, but these endogenous particles are angular in shape, whereas the newly discovered compounds are spherical. Their shape and other properties suggest that the nanoparticles were generated during high-temperature processes like combustion.

The results, published yesterday (September 5) in PNAS, suggests that inhaled magnetite, which is known to be a ubiquitous air pollutant, can make its way to the brain. Barbara Maher, an environmental scientist at the University of Lancaster, and her coauthors now speculate that this environmental magnetite could pose a health risk.

“This is the first report of iron oxide particles in brain tissue that may have come from an industrial source. As such, this opens up questions about potential neurotoxic effects from industrial pollutants that had not been previously considered,” University of Florida’s Jon Dobson, who researches the potential neurodegenerative role of biologically produced magnetic compounds and was not involved in the study, told The Scientist in an email.

In 1992, researchers discovered angular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome