Exosomes Linked to Cancer Spread from Chemoresistant Tumors in Mice

The vesicles promote metastasis after chemotherapy, but the authors say the results shouldn’t alarm patients and may point to ways to improve treatments.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Endothelial cells (blue/gray) from mice internalizing exosomes (red) released from chemotherapy-treated tumors
C. CIANCIARUSO/I. KEKLIKOGLOU/EPFL

In some patients with cancer, tumors don’t shrink in response to chemotherapy and these patients are more likely to develop metastatic cancer. Mouse studies have shown that for some drug-resistant cancers, chemotherapy can actually promote metastasis. Now, a study published on December 31 in Nature Cell Biology links the spread of breast cancer from resistant tumors in mice to extracellular vesicles these cancer cells secrete and shows an uptick in their potential to cause metastasis after treatment with some chemotherapeutic drugs.

“We were surprised to see that chemotherapy was enhancing this process of metastasis, mediated by the vesicles,” says Michele De Palma, a cancer biologist at the École Polytechnique Fédérale de Lausanne and one of the paper’s authors. “This was quite counterintuitive.”

Many types of cells produce extracellular vesicles, known as exosomes when they’re a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Carolyn Wilke

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo