Exploring Alternative Codon Usage in Yeast

Newly discovered amino acid reassignment could have implications for certain biotech applications and RNA-based evolutionary theories.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Pachysolen tannophilusTOM JEFFERIESWhen recombinant protein expression fails, a scientist might blame faulty sequence data or a kit gone bad. But in the case of the ascomycete yeast Pachysolen tannophillus, researchers have identified a more fundamental problem: a CUG codon that normally translates to leucine instead results in alanine. This alternative coding, which joins another known nuclear sense codon reassignment in yeast, has been reported independently in two publications: a May Genome Research paper and another study, published this week (August 17) in PNAS. The authors of both papers have noted that their discoveries in P. tannophillus may be relevant to certain biotech applications involving the microbe as well as the study of RNA-based evolution in yeast.

The other known alternate sense codon use among yeast was first identified in Candida albicans two decades ago. This too involves a CUG codon, but results in serine in the translated protein.

“For this event to happen twice in a different linage is unexpected,” said Manuel Santos, the director of the Institute for Biomedicine at the University of Aveiro, Portugal, who was not involved with either study.

Santos, who has studied the CUG-serine reassignment extensively, told The Scientist that while a coding change may eventually confer an evolutionary fitness advantage, the initial reassignment comes at a substantial cost. Replacing bulky hydrophobic leucine with alanine or serine—both small, polar amino acids—could disrupt the structures and functions of critical proteins. Because the change is at the level ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kim Smuga-Otto

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide