Facing Down Emerging Viruses

A better knowledge of the pathogenesis of emerging zoonotic diseases is crucial if we want to prepare for “the next Ebola.”

Written byMichal Barski
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

© ISTOCK.COM/ANYAIVANOVAThe disastrous and still ongoing Ebola epidemic in West Africa has highlighted the threat of newly emerged viral infections. As we observe the herculean attempts to contain the infection and the rush to test and approve underdeveloped drugs and vaccines, it is easy to overlook the true lesson to be learned from this situation—namely, how little we know about why and how certain viruses spill over from their natural hosts and how they interact with the human immune system.

Nearly 60 percent of all human pathogens are of zoonotic origin. This includes pathogens that have only very recently jumped to humans—such as Ebola, its emergence first reported several decades ago and again last year—as well as pathogens that have been with our species for hundreds or thousands of years. Smallpox, for example, most likely emerged in Central Africa as early as 2000 BC. Epidemiology tells us that the spread of a pathogen relies on perpetual contact with new groups of susceptible individuals. With the socioeconomic and environmental changes currently taking place, we are creating ideal conditions for the emergence and spread of zoonotic viruses. Moreover, the staggering increase in long-distance mobility (mainly via air travel) allows organisms—from people to pathogens—to jump around the world ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies