“Feel-Good” Neurons Steer Mice Toward Hydration-Boosting Liquids

The cells signal to the brain how hydrating particular beverages are, but it’s not yet clear whether they play a similar role in humans.

Written byShafaq Zia
| 3 min read
a gray mouse drinking from a water bottle in a cage
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Dopamine, a “feel good” chemical, is released in the brain when we eat high-fat and sugary delights that taste good. However, it may also guide our food and drink choices through a mechanism that has nothing to do with taste, a recent mouse study finds.

A team of researchers at the University of California, San Francisco (UCSF), describe the new mechanism in a paper published July 13 in Nature. They report that dopamine-releasing neurons in a region of the brain called the ventral tegmental area (VTA) that is important for reward-seeking behavior, motivation, and aversion are activated by hydration.

This mechanism, the researchers say, explains how animals learn to prefer one type of food over another in order to survive in the wild. “Many animals actually get most of their water from food,” says study coauthor James Grove, a neuroscientist at UCSF. “So they presumably have to learn through experience ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shafaq Zia

    Shafaq Zia is a freelance science journalist and a graduate student in the Science Writing Program at the Massachusetts Institute of Technology. Previously, she was a reporting intern at STAT, where she covered the COVID-19 pandemic and the latest research in health technology. Read more of her work here.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA