Fellow Travelers

Collective cell migration relies on a directional signal that comes from the moving cluster, rather than from external cues.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The paper
J.G. Dumortier et al., “Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts,” PNAS, 109:16945-50, 2012.

Cells migrating as a group play an important role in early development, tissue repair, and some cancers, but the mechanisms by which close-knit gangs of cells find their way to a new location are not clear. Previous work has suggested that cells migrate as individuals, their coherence a result of each responding to the same signals.

But Nicolas David and colleagues at the Institute of Biology of the École Normale Supérieure in Paris were not convinced. They used single-cell transplants in zebrafish embryos to demonstrate that migratory cells can only orient properly when in contact with the endogenous group, suggesting that directional information is contained within the group and shared through cell-cell contacts, rather than provided by external cues.

The researchers engineered prechordal plate cells, on the dorsal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH