Finding Could Pave the Way to New, Targeted Antibody Treatments

IgA antibodies appear to bind to specific species of commensal gut bacteria in mice, according to a study.

Written byNatalia Mesa, PhD
| 3 min read
illustration of inside of gut with floating bacteria
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

While we mainly think of the immune system as a shield against harmful bacteria, immune cells also make antibodies against the trillions of helpful bacteria that live in our guts. These antibodies keep friendly bacteria from venturing out of the intestines. But scientists don’t know whether our immune cells mostly target each species individually, or whether they largely recognize many microbial varieties at once. The answer to that question has implications for treating intestinal diseases, since ideally, therapies would target pathogens while leaving beneficial species alone.

A study published today (July 8) in Science Immunology reports that mice make antibodies that are extremely specific to the particular bacterial species living in their guts. The repertoire of antibodies in mouse guts is like a fingerprint: unique and dependent on which bacterial strains have colonized their intestinal tracts. This specificity toward certain bacterial species could mean that future immune-based therapies might target ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH