Flux and Uncertainty in the CRISPR Patent Landscape

The battle for the control of the intellectual property surrounding CRISPR-Cas9 is as storied and nuanced as the technology itself.

Written byAggie Mika
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

In May 2012, the University of California, Berkeley, filed a patent application for biochemist Jennifer Doudna and the University of Vienna’s Emmanuelle Charpentier, then of Umeå University in Sweden, based on their seminal observation that the bacterial CRISPR-Cas9 gene-editing system can be used to target different sequences of DNA by reprogramming the system’s small homing guide RNAs. The Broad Institute of MIT and Harvard followed suit that December with applications for bioengineer Feng Zhang and colleagues covering CRISPR’s use in eukaryotic cells. When the US Patent and Trademark Office (USPTO) granted Zhang’s patent in April 2014, thanks to an expedited review process, a now-infamous dispute was born.

The University of California (UC) group quickly filed for a patent interference hearing, which the USPTO’s Patent Trial and Appeal Board (PTAB) granted in December 2015. In February of this year, however, the PTAB three-judge panel ruled that the Broad’s innovations are patentable separately from the UC team’s original discovery. Not wanting to be limited to gene editing in bacteria, the UC side appealed the ruling in April, claiming that their original application covers the use of this technology in all cells—plant, animal, and human, in addition to bacterial. “There’s a lot of uncertainty right now about who is going to own what rights,” says Lisa Larrimore Ouellette, a law professor at Stanford University.

While the dispute has little bearing on the use of CRISPR-Cas ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research