In May 2012, the University of California, Berkeley, filed a patent application for biochemist Jennifer Doudna and the University of Vienna’s Emmanuelle Charpentier, then of Umeå University in Sweden, based on their seminal observation that the bacterial CRISPR-Cas9 gene-editing system can be used to target different sequences of DNA by reprogramming the system’s small homing guide RNAs. The Broad Institute of MIT and Harvard followed suit that December with applications for bioengineer Feng Zhang and colleagues covering CRISPR’s use in eukaryotic cells. When the US Patent and Trademark Office (USPTO) granted Zhang’s patent in April 2014, thanks to an expedited review process, a now-infamous dispute was born.
The University of California (UC) group quickly filed for a patent interference hearing, which the USPTO’s Patent Trial and Appeal Board (PTAB) granted in December 2015. In February of this year, however, the PTAB three-judge panel ruled that the Broad’s innovations are patentable separately from the UC team’s original discovery. Not wanting to be limited to gene editing in bacteria, the UC side appealed the ruling in April, claiming that their original application covers the use of this technology in all cells—plant, animal, and human, in addition to bacterial. “There’s a lot of uncertainty right now about who is going to own what rights,” says Lisa Larrimore Ouellette, a law professor at Stanford University.
While the dispute has little bearing on the use of CRISPR-Cas ...