Flux and Uncertainty in the CRISPR Patent Landscape

The battle for the control of the intellectual property surrounding CRISPR-Cas9 is as storied and nuanced as the technology itself.

Written byAggie Mika
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

In May 2012, the University of California, Berkeley, filed a patent application for biochemist Jennifer Doudna and the University of Vienna’s Emmanuelle Charpentier, then of Umeå University in Sweden, based on their seminal observation that the bacterial CRISPR-Cas9 gene-editing system can be used to target different sequences of DNA by reprogramming the system’s small homing guide RNAs. The Broad Institute of MIT and Harvard followed suit that December with applications for bioengineer Feng Zhang and colleagues covering CRISPR’s use in eukaryotic cells. When the US Patent and Trademark Office (USPTO) granted Zhang’s patent in April 2014, thanks to an expedited review process, a now-infamous dispute was born.

The University of California (UC) group quickly filed for a patent interference hearing, which the USPTO’s Patent Trial and Appeal Board (PTAB) granted in December 2015. In February of this year, however, the PTAB three-judge panel ruled that the Broad’s innovations are patentable separately from the UC team’s original discovery. Not wanting to be limited to gene editing in bacteria, the UC side appealed the ruling in April, claiming that their original application covers the use of this technology in all cells—plant, animal, and human, in addition to bacterial. “There’s a lot of uncertainty right now about who is going to own what rights,” says Lisa Larrimore Ouellette, a law professor at Stanford University.

While the dispute has little bearing on the use of CRISPR-Cas ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies