Forensics 2.0

Meet the researchers working to untangle the mystery of a Missouri home filled with bones by bringing cutting-edge technologies into the crime lab.

Written byBob Grant
| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

COMPOSITE FROM ©ISTOCK.COM/K-KWANCHAi/MRTOM-UK

Forensic anthropologist Lindsay Trammell had only just received the human remains and she already knew that she’d need help with this case. It was the summer of 2014, and 15 skeletons had arrived at the St. Louis Medical Examiner’s Office as a jumble of bones inside four wooden coffins. Some of the bones looked ancient; they were “falling apart,” Trammell recalls. But others were in relatively good shape. “There were different levels of preservation throughout the remains.”

She photographed, inventoried, and measured the skeletal elements employing the standard biological techniques typically used by forensic anthropologists, who are still by and large not regular fixtures in crime labs. Those analyses indicated that some of the skulls bore characteristics of people with African ancestry while others did ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control