Gene Editing Makes Cells Evade Immune Attack In Vitro

To advance the possibility of off-the-shelf cardiac cell therapies, scientists devise an engineered cardiac stem cell that avoids stimulating a detrimental immune attack.

emma yasinski
| 3 min read
immune cells t cell natural kill cell cardiac stem cell ipsc

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, DESIGN CELLS

Cell therapies to treat cardiac damage have been moving through clinical trials, with mixed results. Often, stem cells are taken from a patient’s bone marrow and infused into the heart. These transplants don’t typically stick around for long and there’s no guarantee patients will see any benefit. Researchers would like to make a “universal” or off-the-shelf intervention developed from donor stem cells that would be ready to go when a patient needs it, engraft in the heart tissue to help it regenerate, and avoid rejection by the immune system.

Lauren Randolph, a bioengineering graduate student at Penn State University, and her team are genetically engineering embryonic stem cells as well as human induced pluripotent stem cells so that they differentiate into cardiac cells but don’t inspire such an onslaught from the immune system when they are transplanted into a person’s damaged heart. She says her ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • emma yasinski

    Emma Yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development