Genes Tied to Wasps Recognizing Faces

The brains of Polistes paper wasps express different genes when identifying faces than when distinguishing between simple patterns, a study finds.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Polistes metricus, femaleWIKIMEDIA, SAM DROEGEHumans are face-recognition specialists. We can pick out faces better than other patterns, but not all animals excel like we do. A few groups of large-brained social animals, including macaques and sheep, are known to recognize each other by facial features, and among insects the talent is especially rare—only a handful of paper-wasp species are known to do it.

To uncover the genetic basis of wasp face recognition, researchers analyzed gene expression in the brains of paper-wasp species that had been trained to recognize faces and compared that with wasps trained to recognize patterns. As reported today (June 14) in the Journal of Experimental Biology, they found that the brain gene-expression patterns involved in face- and pattern-recognition are different.

“There is something special about face learning, and we can detect this on the level of brain gene activity,” study author Ali Berens, now at Monsanto, tells The Scientist in an email. “The activity of hundreds of genes change in the brain during facial recognition. This illustrates that brain responses to relevant social stimuli (like faces) can be highly specific on the level of genes.”

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo