Genetic Risk for Alzheimer’s Disease Linked to Highly Active Brains

A growing body of evidence supports the theory that neural hyperactivity and hyperconnectivity precede the pathological changes that lead to neurodegeneration.

Written byDiana Kwon
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, WHITEHOUNE

There are approximately 5.6 million people over the age of 65 living with Alzheimer’s disease in the United States. With the population aging, that number is projected to grow to 7.1 million by 2025. Researchers know that age, a family history of the disease, and carrying a genetic variant known as APOE4 are all associated with a higher chance of developing the condition. But the biological mechanisms leading to Alzheimer’s are still largely a mystery.

Over the last decade, scientists have amassed evidence for a hypothesis that, prior to developing full-blown Alzheimer’s disease, patients experience a period of hyperactivity and hyperconnectivity in the brain. Several functional magnetic resonance imaging studies have reported that people with mild cognitive impairment (MCI), a condition that often precedes Alzheimer’s, appear to have higher brain activity levels than their age-matched counterparts. Researchers have also found signs of such changes in healthy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

October 2019

Brain Fog

Air Pollution May Cause Cognitive Decline

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH