Grab ’n’ Glow

Engineered proteins can tether multiple fluorescent molecules to give a brighter signal—and that’s not all.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A common way to visualize single DNA or RNA molecules in cells is to insert into the target molecule multiple copies of a sequence to which a fluorescently tagged protein can bind. The more copies of the sequence, the more bound fluorescent proteins, the brighter the signal. Marvin Tanenbaum, a postdoc in Ronald Vale’s lab at the University of California, San Francisco, thought to himself, “Why don’t we do this for proteins?” So he did.

Prior to Tanenbaum’s technique, called SunTag, the main way to visualize a protein in cells was to recode its sequence to contain a fluorescent domain—such as green fluorescent protein (GFP). Proteins with a single GFP domain were often too dim for some types of fluorescent microscopy, however, and adding more GFP domains didn’t always work—the proteins became unfeasibly large.

With SunTag, proteins of interest are instead recoded to contain multiple copies (up to 24) of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies