Gut Microbes Influence Circadian Clock

Metabolites produced by gut microbes in mice can affect the animals’ circadian rhythm and metabolism.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAThe mammalian gut microbiome is involved in controlling the circadian rhythm of its host, according to a mouse study published today (April 16) in Cell Host & Microbe. In both mice and humans, timing of feeding and diet type can impact the bacterial populations of the gut. Now, Eugene Chang of the University of Chicago Medical Center and his colleagues have found that mouse gut microbiota produce metabolites in diurnal patterns, and these can influence the expression of circadian clock genes in the liver.

The results provide additional support for the idea that the gut microbiome is dynamic, said Satchidananda Panda of the Salk Institute for Biological Studies who was not involved in the work. “At night, we go to bed with a bunch of bugs in our stomachs and wake up in the morning with a different set of bugs,” said Panda. “The implications are pretty big because there are more bacterial cells in our guts than the number of cells in our body and these species produce different enzymes and factors that have a big impact on our overall metabolism.”

Joseph Takahashi, who studies mammalian circadian rhythm at the University of Texas Southwestern Medical Center but was not involved in the current work, noted in an e-mail ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies