Hope, Concern Surround WHO Green Light of First Malaria Vaccine

RTS,S has several flaws but could still save tens of thousands of lives, experts say.

Written byKatarina Zimmer
| 10 min read
close-up of a mosquito on human skin

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: © ISTOCK.COM, MRFIZA

Plasmodium parasites are as stealthy as pathogens come. The malaria-causing single-celled organisms have been adapting to the human lineage for longer than our species has existed, giving them millions of years of training in evading our immune systems and—until recently—an unshakable advantage over vaccine developers.

While SARS-CoV-2, the virus that causes COVID-19, only has 29 proteins, Plasmodium species have thousands. SARS-CoV-2’s spike protein, which it uses to invade human cells, is an obvious bullseye for vaccines, but Plasmodium is a moving target. After mosquitoes inject Plasmodium sporozoites into the bloodstream, the parasites hide away and multiply in liver cells, from which they emerge as bloodborne merozoites, which commence fever-inducing invasions of red blood cells. Some of the parasites shapeshift yet again and are picked up through mosquito bites. For each life stage, Plasmodium transforms its cloak of proteins—a challenge to vaccinologists. Many vaccine efforts have failed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH