Image of the Day: Melanoma Neural Network

A deep neural network can help determine how likely cancer cells are to metastasize.

Written byEmily Makowski
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Synthetic melanoma samples generated by the neural network
ASSAF ZARITSKY, GAUDENZ DANUSER, ANDREW JAMIESON, ERIK WELF, ANDRES NEVAREZ

Researchers are presenting new images from their deep neural network that analyzes melanoma cells at this year’s American Society for Cell Biology / EMBO meeting, which started Saturday (December 7).

Assaf Zaritsky, now at Ben-Gurion University of the Negev, began this work as a postdoc in Gaudenz Danuser’s lab at the University of Texas Southwestern Medical Center. He and Danuser, along with colleagues Erik Welf and Andrew Jamieson at UT Southwestern and Andres Nevarez at University of California San Diego, developed a deep neural network that uses machine learning to distinguish melanoma cells that have high versus low metastatic potential—meaning how likely the cancer is to spread. This live-cell histology relies on subtle cues from cell actions rather than the traditional method of classifying the cells by shape and size. The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies