Infographic: Building Bacteria to Fight Cancer

Researchers are engineering microbes to deliver therapeutics specifically to tumors, maximizing the treatments’ efficacy while minimizing side effects.

Written bySimone Schuerle and Tal Danino
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ABOVE: © MESA SCHUMACHER

Synthetic biologists are applying new strategies in genetic engineering to encode traits and smart circuits in bacteria for more effective in vivo monitoring and drug delivery. At the same time, engineers are developing instruments for external control and guidance of bacteria with the aim of enhancing their ability to find and access tumors. Here are a few examples.

Jeff Hasty of the University of California, San Diego, in collaboration with Sangeeta Bhatia of MIT (and T.D. in Bhatia’s lab), engineered an attenuated Salmonella enterica bacterial strain to synchronously release cancer therapeutics when the population reaches a critical density, allowing periodic drug delivery in mouse tumors. The effect is based on quorum lysis, meaning when a critical bacteria cell density is sensed by the population, they lyse and release the drug, while surviving bacteria keep proliferating until the critical threshold is reached again to repeat the cycle.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH