Infographic: Building Bacteria to Fight Cancer

Researchers are engineering microbes to deliver therapeutics specifically to tumors, maximizing the treatments’ efficacy while minimizing side effects.

Written bySimone Schuerle and Tal Danino
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ABOVE: © MESA SCHUMACHER

Synthetic biologists are applying new strategies in genetic engineering to encode traits and smart circuits in bacteria for more effective in vivo monitoring and drug delivery. At the same time, engineers are developing instruments for external control and guidance of bacteria with the aim of enhancing their ability to find and access tumors. Here are a few examples.

Jeff Hasty of the University of California, San Diego, in collaboration with Sangeeta Bhatia of MIT (and T.D. in Bhatia’s lab), engineered an attenuated Salmonella enterica bacterial strain to synchronously release cancer therapeutics when the population reaches a critical density, allowing periodic drug delivery in mouse tumors. The effect is based on quorum lysis, meaning when a critical bacteria cell density is sensed by the population, they lyse and release the drug, while surviving bacteria keep proliferating until the critical threshold is reached again to repeat the cycle.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies