Infographic: Understanding Our Diverse Brain

Recent advances in single-cell omics and other techniques are revealing variation at genomic, epigenomic, transcriptomic, and posttranscriptomic levels.

Written byTracy A. Bedrosian, Fred H. Gage, and Sara B. Linker
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© HEIDI SCHMIDT

Of the 100 billion or so neurons in the human brain, there may be no two that are alike. Such diversity can arise at all stages of development and into adulthood. In the case of genetic changes that are passed on to daughter cells, the stage at which mutations occur will dictate their frequency in the brain. Researchers are now working hard to catalog every cell type within the human brain, and understand how differences among them may underlie variation in neuronal function. There are early hints that this mosaicism may contribute to personality and behavioral differences among individuals, as well as to various neurological or psychiatric disorders.

Although it was once assumed that all cells within an organism shared an identical genome, researchers now ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo