Infographic: Vaccinating Against Tumors

Cancer vaccines offer the opportunity to use the patient’s own immune system in the fight against tumors.

Written byShelby Bradford, PhD
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share
TK
modified from © ISTOCK.COM, ttsz, Rungnaree Jaitham, Shonyjade, PsychoBeard; designed by ashleigh campsall

1. Antigen preparation: Scientists can produce cancer vaccines against tumors by using the patient’s tumor as a source of antigen or by synthesizing peptides from tumor antigens.

2. Antigen delivery: Researchers use different vaccine platforms to deliver the antigens: patient-derived dendritic cells, adeno-associated viral vectors, and lipid nanoparticles.

3. Antigen presentation: Once administered, these antigens eventually find their way to patient dendritic cells, or are immediately expressed on dendritic cells if they are used as the vehicle. The dendritic cells travel to lymph nodes to activate antigen-specific T cells.

4. Anti-tumor immunity: Once activated, these tumor-antigen-specific T cells will multiply (a) and travel to the tumor, where they help target the tumor cells for destruction (b). Some activated T cells will become memory cells (c, shown in purple); these will reside in the lymph node or nearby tissue to protect the body against future recurrences of the same type of cancer.

Read the full story.

Related Topics

Meet the Author

  • Shelby Bradford, PhD

    Shelby is an Assistant Editor at The Scientist. She earned her PhD in immunology and microbial pathogenesis from West Virginia University, where she studied neonatal responses to vaccination. She completed an AAAS Mass Media Fellowship at StateImpact Pennsylvania, and her writing has also appeared in Massive Science. Shelby participated in the 2023 flagship ComSciCon and volunteered with science outreach programs and Carnegie Science Center during graduate school. 

    View Full Profile

Published In

Spring 2024 cover
Spring 2024

Turning on the Bat Signal

Research into bat immune systems may help keep humans safe from viral attacks.

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA