Inhaled Antibody Fragments Protect Infected Animals Against COVID-19

Tiny but powerful nanobodies may be the innovation that snuffs out the pandemic.

Written byRoni Dengler, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When protein biologist Yi Shi started his lab at the University of Pittsburgh four years ago, he was excited to develop potential treatments for Alzheimer’s disease. He worked out a pipeline for making nanobodies, small antibody fragments with high binding affinities. His research program was getting off the ground. Then the pandemic started.

In March 2020, Shi made the hard and risky decision to halt his research and join the scientific community in their efforts to mitigate COVID-19. Shi did not know much about virology and felt that he was struggling through darkness in the beginning. But motivation from a colleague inspired him to give it a try, and the decision paid off.

Shi and his team developed inhalable nanobodies that protected hamsters infected with SARS-CoV-2 against COVID-19. The findings bring Shi and colleagues one step closer to producing a treatment that may help bring an end to the pandemic.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH