Live Cell Extractions

Nanostraws that collect specimens from cells without killing them allow for repeated sampling.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

EXTRACTION WITHOUT KILLING: Cells are cultured atop a polycarbonate membrane perforated in spots by vertical aluminum oxide nanostraws. At defined locations, where the membrane has been etched away lithographically, the nanostraws protrude from the membrane and contact the cells. A brief electric voltage is passed across the nanostraws, causing temporary perforations in the cell membrane. This allows small volumes of cytoplasm to diffuse into the nanostraws for collection in the reservoir of extraction buffer below the polycarbonate membrane.
See the full infographic: WEB
© GEORGE RETSECK

Analyzing cells en masse provides a general idea of the happenings within a given cell type, but misses the subtle yet significant variations between individual cells—variations that may result in different responses to developmental signals, drugs, and other factors.

To better explore the inherent heterogeneity of cell populations, “many people are trying to do single-cell analyses,” says Orane Guillaume-Gentil of the Swiss Federal Institute of Technology (ETH). But, she adds, the approaches are limited. “You have to kill the cells, so you cannot see anything dynamic, and you also lose the [spatial] context of the cells.”

The problem, agrees Nicholas Melosh of Stanford University, is that “you want to know what a cell is, but [current single-cell approaches] tell you what it was.”

Researchers are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH