Meet the Transgenic Silkworms That Are Spinning Out Spider Silk

Researchers explore genetic engineering to produce super-tough fibers.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

SILK MERCHANTS: With the help of inserted spider genes, these newly hatched transgenic silkworms can spin silk that is closer to that spun by arachnids.IMAGE COURTESY OF KRAIG BIOCRAFT LABORATORIES

In Jon Rice’s office is a small incubator full of tiny insect eggs—one of many such incubators kept at Kraig Biocraft Laboratories (KBL), the Michigan-based polymer development company where Rice is chief operations officer. From these eggs will hatch tiny silkworms, caterpillars of the domesticated silk moth Bombyx mori, which will then set to chomping down on mulberry leaves and preparing themselves for the demanding task of spinning silk cocoons to pupate in just a few weeks later.

But these are no ordinary silkworms, a fact you might notice “if you know what you’re looking for,” Rice says. For a start, “the eyes and the feet of our silkworms glow, if you look at them under the right UV filter,” he explains. And the cocoons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

October 2017

A Natural Archive

The practical challenges of storing data in DNA

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio