Metals on our Mind

A dramatic loss of copper in key brain regions may be central to Alzheimer’s disease. Could restoring metals in the brain help?

Written byAnthony White
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

© KURT DRUBBEL/ISTOCKPHOTO.COMMany people threw out their aluminum pots and pans in the 1960s and 1970s, when they heard that researchers had discovered small amounts of the metal in the sticky amyloid plaques that litter the brains of Alzheimer’s patients. While the notion that ingestion of aluminum products might contribute to the disease has since been discredited, evidence is accumulating that metals such as copper, zinc, and iron can play an important role in driving brain degeneration. These biologically active metals have been linked not only to Alzheimer’s disease (AD), but also to Parkinson’s, motor neuron disease, and a group of childhood brain disorders called lysosomal storage diseases, among others.

That biometals influence brain health and disease should not be surprising. Ions of copper, zinc, iron, manganese, and cobalt are all key cofactors in a wide range of brain cell functions, including cellular respiration, antioxidant removal of toxic free radicals, and oxygen delivery to brain cells. (See illustration.) These metals are also cofactors for cell signaling at synapses. In fact, it has been estimated that half of all proteins in the body form complexes with metals.

Exciting new therapeu­tic approaches, involving the delivery of metals to the brain, are now being tested for their ability to restore lost neu­ronal function.

Given the ubiquity of metals’ presence in the brain, it follows that even small errors in the way biometals are regulated are likely to impact ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies