Microbes Shape Circadian Rhythms in the Mouse Gut

The diurnal cycles of the microbiome alter the activity of a protein produced by the host, and in turn guide histone acetylation, gene expression, and metabolic activity.

kerry grens
| 2 min read
circadian clock microbiome hdac3 histone deacetylation acetylation epigenetics gene expression metabolism fat lipid intestine gut

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, GREENVECTOR

Mice lacking their intestinal microbiota lose the rhythmic patterns in fat uptake that cycle diurnally in mice with their microbiomes intact, researchers reported today (September 26) in Science. The phenomenon is a consequence of the microbes’ influence on the host’s gene regulation. Microbes direct the activity of an enzyme called HDAC3 that in turn influences the activity of mouse genes important for metabolism and, ultimately, the absorption of fat, according to the study.

“Our finding that the intestinal microbiota programs the daily rhythmic expression of small intestine metabolic networks illuminates an essential role for the microbiota in regulating host metabolism and indicates that the microbiome, the circadian clock, and the mammalian metabolic system have tightly coevolved,” the authors write in their report.

Previous research had shown that the gut has a circadian clock, processing nutrients differently depending on the time of day. Researchers had also shown ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit