Minimal Toolkit for Stem Cell Self-Renewal

Researchers identify a network of a dozen transcription factors needed to maintain the pluripotent state of mouse embryonic stem cells.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mouse embryonic stem cells stained for key pluripotency markersGRAZIANO MARTELLO Combining computer science algorithms with biological data has enabled researchers to create a model of the minimal number of factors necessary for mouse embryonic stem cells (ESCs) to self-renew in culture. While scientists have long known that a group of transcription factors are needed for stem cell maintenance, the sheer number of possible interactions among them has made the question of which are essential too complicated to address in the laboratory alone.

Austin Smith of the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute teamed up with investigators from the Microsoft Research Computational Science Laboratory, also in the U.K., to incorporate experimental data on 20 key transcription factors involved in stem cell self-renewal. The resulting model, published today (June 5) in Science, shows that an interaction network of just 12 transcription factors is all that may be needed to maintain the mouse ESC state.

“We wanted to understand how stem cell transcription factors were interconnected and explain how these cells behave in different culture conditions and still maintain the stem cell state,” said Smith. “This modeling approach allowed us to map the transcription factor connections that is consistent with experimental data.”

”The conclusion here is that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies