Mitochondrial Isolation System

A transgenic approach allows researchers to collect the organelles from specific cells in nematodes with unprecedented efficiency.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SORTED: With CS-MAP, researchers genetically label mitochondria in cells of interest, then use antibodies to isolate them for analysis.
See full infographic: WEB
GEORGE RETSECK
Mitochondria power eukaryotic cells, but they do more than produce energy. These organelles, which contain their own genomes, RNAs, and protein-synthesizing machines, also regulate other cellular processes, including programmed cell death and calcium signaling. So it’s not surprising that mutations to mitochondrial DNA (mtDNA) can cause a range of debilitating and deadly diseases.

Studying these ailments is complicated, says University of Massachusetts molecular biologist Cole Haynes. “You might get a mutation in a respiratory chain gene, which should be important, but it only affects a handful of cells. And then another mutation that doesn’t look so different may cause severe neurodegeneration or muscle defects.”

This unpredictability is thought to stem from the differing ratios of mutant and wildtype mitochondria that can occur in different cell types, says Steven Zuryn of the University of Queensland in Brisbane, adding that even genetically identical mitochondria can behave differently in terms of morphology and activity in different cells.

Techniques for analyzing such cell-specific differences are limited, however, says Zuryn. It is possible to mash up the cells of a particular organ and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

May 2018

Rare Diseases

The realities of studying uncommon conditions

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio