More Anti-CRISPR Proteins to Block Cas9

The latest CRISPR deactivators to be discovered turn off the Streptococcus pyogenes Cas9 widely used in genome editing.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, CAS9 WIKI PROJECTFollowing closely on the heels of the discovery of several proteins that can block CRISPR-Cas9 activity in human cells, researchers from the University of California, San Francisco, report yet more anti-CRISPRs, in a study published in Cell today (December 29). Joseph Bondy-Denomy of UCSF and colleagues demonstrate how two such inhibitors can stop CRISPR gene editing activity in both bacterial and human cells, by impeding the Cas9 enzyme from Streptococcus pyogenes.

“The next step is to show in human cells that using these inhibitors can actually improve the precision of gene editing by reducing off-target effects,” said coauthor Benjamin Rauch, a post-doc in Bondy-Denomy’s lab, in a press release. “We also want to understand exactly how the inhibitor proteins block Cas9’s gene targeting abilities, and continue the search for more and better CRISPR inhibitors in other bacteria.”

The researchers found these Cas9 blockers by searching bacterial genomes for both a CRISPR sequence and its target, under the assumption that the genome likely contained an inhibitor to prevent CRISPR from cutting that target in the bacterium’s own genome. Indeed, Rauch and colleagues uncovered several anti-CRISPRs in Listeria whose sequences had been left behind in the bacterial genome ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH