Neurodegeneration and Protein Translation Linked

Researchers find that a type of neurodegeneration in mice is linked to ribosomal stalling during protein translation in the brain.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LABORATORY MOUSE OF STRAIN C57BL/6JJACKSON LABORATORIESSearching for new mutations associated with neurodegenerative and cognitive defects, researchers have uncovered two mouse genes that function in the same critical pathway such that, when both are lost, neurodegeneration results. The genes are both involved in protein translation and, surprisingly, one encodes a transfer RNA (tRNA) gene uniquely expressed in the brain—a first example of such differential expression in vertebrates.

While, in theory, eukaryotes need to encode approximately 42 different tRNA genes—to decode the 61 messenger RNA (mRNA) triplet codons that specify an amino acid—the genomes of vertebrates contain hundreds of tRNA genes. So far, researchers have presumed that the redundancy exists because a large amount of these tRNAs are needed to meet the demands of constant translation of mRNAs to proteins. Also surprising was the pre-existence of this tRNA mutation only in a specific, widely studied strain of laboratory mice. The work, published today (July 24) in Science, suggests that, rather than being redundant, some of these tRNA genes may have tissue-specific functions.

“It has been assumed that more tRNA genes just make more tRNAs, but this study very strongly suggests that specific tRNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo