Newly ID’d Transposons Involve Cas

Researchers uncover a group of mobile genetic elements in bacteria and archaea encoding a Cas enzyme.

Written byKerry Grens
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, XIAOYU XIANGTransposons are stretches of DNA that can hop to different sites in the genome and are commonly found in many types of organisms. In a study published in BMC Biology this month (May 19), researchers described a new type of transposon-like element in bacteria and archaea that encodes a Cas enzyme—well appreciated for its role in the CRISPR/Cas adaptive immune system in prokaryotes—which it in turn requires for integrating into a new genomic home.

As an immune response, CRISPR/Cas works by targeting and chopping up foreign DNA, and labs around the globe have adapted it for genomic editing purposes using the enzyme Cas9. As part of the present study, researchers from Pasteur Institute in Paris and the National Center for Biotechnology Information in Bethesda, Maryland, compared the genomes of several archaeal and bacterial taxa and identified related Cas1 endonucleases.

The regions of the genome encoding these Cas1 proteins showed the hallmarks of mobile genetic elements. “The only enzyme that is consistently present in all these elements and, judged by its experimentally characterized activity, is capable of mediating the integration of the elements into the host genome is Cas1,” the authors wrote. “Accordingly, we denote this new group of transposon-like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies