Mouse with light-guiding hydrogel implantM. CHOIThe device: Seok Hyun Yun, Myunghwan Choi, and colleagues have combined genetic engineering, small cellular scaffolds, and optogenetic principles to develop “light-guiding hydrogels.” The researchers engineered the hydrogels—which are made of water, cell media, and biopolymers—to be flexible and clear, so that they serve as a waveguide for light. After creating hydrogels containing HeLa cells, the researchers attached a fiber optic cable, and transplanted the four-centimeter long hydrogels subcutaneously in mice. They showed in vivo that the constructs could both detect fluorescent proteins expressed by the cells and stimulate the cells using light transferred to the fiber optic cable to suppress high blood glucose levels in diabetic mice. Their work was published today (October 20) in Nature Photonics.
“We only showed one example each of light sensing and therapy, but there are over 20,000 functional proteins in cells,” said first author Choi, a postdoctoral fellow at Harvard University in Cambridge, Massachusetts. He added that if scientists genetically engineered even some of these cellular proteins to respond to light, then, combined with light-guiding hydrogels, they might be able to assert much better control over cells and cell-based therapies.
What’s new: “People have done cell-based therapies. People have done hydrogel-based therapies. People have combined cells and hydrogels together, but the ability to stimulate [the cells] optically, and to do it in a controlled manner—using the properties of the hydrogel as a waveguide—is innovative,” said Michael Pishko, a professor of biomedical engineering at Texas A&M University, ...