Oct4, Considered Vital for Creating iPSCs, Actually Isn’t Needed

Dropping the transcription factor from the four so-called Yamanaka factors reduces the efficiency of inducing the production of stem cells, but the resulting cells are of greater quality.

emma yasinski
| 3 min read
oct4 yamanaka factor oskm ips ipsc induced pluripotent stem cell

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A mouse created from iPS cells derived without the transcription factor Oct4.
SERGIY VELYCHKO

Since 2006, when Shinya Yamanaka, now the director of the Center for iPS Cell Research and Application at Kyoto University, discovered a method that could guide fully differentiated cells back to their pluripotent state, scientists have been using his recipe to produce induced pluripotent stem cells. The protocol relies on overexpressing the so-called Yamanaka factors, which are four transcription factors: Oct4, Sox2, Klf4, and cMyc (OSKM). While the technique reliably creates iPS cells, it can cause unintended effects, some of which can lead to cells to become cancerous. So researchers have worked to adjust the cocktail and understand the function of each factor.

No one had succeeded in creating iPS cells without forcing the overexpression of Oct4. It was thought that this was the most crucial factor of the four. At least until now.

If this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • emma yasinski

    Emma Yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo