Oct4, Considered Vital for Creating iPSCs, Actually Isn’t Needed

Dropping the transcription factor from the four so-called Yamanaka factors reduces the efficiency of inducing the production of stem cells, but the resulting cells are of greater quality.

Written byEmma Yasinski
| 3 min read
oct4 yamanaka factor oskm ips ipsc induced pluripotent stem cell

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A mouse created from iPS cells derived without the transcription factor Oct4.
SERGIY VELYCHKO

Since 2006, when Shinya Yamanaka, now the director of the Center for iPS Cell Research and Application at Kyoto University, discovered a method that could guide fully differentiated cells back to their pluripotent state, scientists have been using his recipe to produce induced pluripotent stem cells. The protocol relies on overexpressing the so-called Yamanaka factors, which are four transcription factors: Oct4, Sox2, Klf4, and cMyc (OSKM). While the technique reliably creates iPS cells, it can cause unintended effects, some of which can lead to cells to become cancerous. So researchers have worked to adjust the cocktail and understand the function of each factor.

No one had succeeded in creating iPS cells without forcing the overexpression of Oct4. It was thought that this was the most crucial factor of the four. At least until now.

If this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research