Omicron Propagates 70 Times Faster than Delta in Bronchi: Study

A preprint reports that the new SARS-CoV-2 variant multiplies faster in human bronchial tissue but slower in lung tissue than the Delta variant, potentially explaining how it’s spreading from person to person so quickly.

Written byDan Robitzski
| 5 min read
An artist’s rendering of the Omicron variant portrays the virus as a lumpy blue sphere with several orange spike proteins jutting out of it.
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Newly shared preliminary data suggests that the Omicron variant of SARS-CoV-2 may target and infect tissues within the respiratory tract at different rates than do the Delta variant and other predecessors. In fact, some experts say, the Omicron variant may owe its enhanced transmissibility to its facility for infecting bronchial tissue far more than the lungs.

Findings from the research, which hasn’t yet undergone peer review, were shared online in a University of Hong Kong news release on Wednesday (December 15). In lung tissue taken from a human patient, the researchers found that the Omicron variant replicated roughly 70 times more in the bronchial tissue that makes up tubes leading into the lungs than did the Delta variant after 24 hours. However, Omicron variant replicated more than 10 times slower in lung tissue than the original coronavirus variant. It’s difficult to extrapolate clinical outcomes from this type of lab-based research, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel