Opinion: How to Define Cell Type

Advances in single-cell technologies have revealed vast differences between cells once thought to be in the same category, calling into question how we define cell type in the first place.

Written byTracy A. Bedrosian, Fred H. Gage, and Sara B. Linker
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Neurons of the mouse hippocampus FLICKR, NICHDResearchers now recognize that there is far more heterogeneity within a given cell type than previously appreciated. Perhaps nowhere in the body is this more striking than in the brain. But as new technologies reveal differences in the genome, epigenome, and transcriptome of cells, we now must wrestle with the question of how to define cell types.

Previous approaches to cell-type identification were based on identifying the presence of a small set of known markers. Current high-throughput, single-cell sequencing methods, on the other hand, enable quantifiable cell-type classification with little or no prior knowledge, revealing previously unidentified variations in cellular phenotypes across numerous tissue types. But, given that cells do not cluster perfectly into distinct units, what portion of this heterogeneity truly defines a novel cell type and what portion can instead be attributed to variations in cell state or to methodological artifacts?

In practice, these single-cell experiments analyze thousands of cells, often with sets of 40,000+ genetic predictors; therefore, it is tempting to perform stratification after stratification to continually identify new cell types, resulting in groupings that go far beyond “type” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo