Partial Reprogramming Offers a Way to Generate High Volumes of Progenitor-Like Cells

Activating genes for reprogramming factors for a short time transforms large numbers of differentiated cells into multipotent forms that could be useful for cell-based therapies.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Hollow iPL colonyLILY GUOThe promise of cell-based therapy is limited by the challenge of generating large enough numbers of the correct type of cells. But a strategy called interrupted reprogramming could help overcome this limitation. In study published today (November 30) in Stem Cell Reports, researchers in Canada subjected mouse lung cells to reprogramming factors for short periods of time, which nudged the cells toward a multipotent, progenitor-like state capable of dividing exponentially to give rise to large numbers of cells, but stopped short of pluripotency.

Coauthor Thomas Waddell, a thoracic surgeon and researcher at the University of Toronto, explains that in the past, researchers have focused on the final product of cellular reprogramming, the induced pluripotent stem cell (iPSC), but that the process of generating iPSCs can be time-consuming and expensive. “We’re interested in the idea that reprogramming could become something other than the two extremes, skin cell [and] pluripotent cell,” he says. “In between there’s actually a lot of interesting biology that is potentially available for therapeutic optimization.”

Waddell and colleagues isolated club cells—a population of both terminally differentiated and variant cells, which proliferate in response to injury—from the lungs of adult mice. They sorted the cells to collect those that appeared to contain only mature club cells that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH