ANDRZEJ KRAUZESoldier ants and worker bees made Darwin scratch his head. How to explain the comportment of insects that live in social groups—catering to the colony’s queen, nursing her eggs and larvae, foraging for food, defending the nest—yet never getting to have their own offspring? In this month’s cover story, “The Genetics of Society,” Claire Asher and Seirian Sumner describe the growing field of sociogenomics, which uses information gathered from genome sequences, epigenetic patterns, and transcriptome and proteome analyses to suss out how a seemingly identical genome can account for observed forms of caste-specific behavior. It’s a story of rapid gene evolution and differential gene expression. “The organization and collective decision making of eusocial insects is even yielding new insights into human behavior and what it means to be part of a society,” write the authors. Darwin would have loved this.
Although human behavior is much less typecast than that of bees, ants, and termites, our species’ reactions to social situations are also proving to be a matter of differential gene expression. It’s been known for quite a while that social adversity, physical abuse, loneliness, and even grief are associated with increased susceptibility to disease. In “Stress Fractures” you’ll learn about alterations in the expression of immune-system genes that occur as a result of psychological stress, and about the generation of immune cells that can “hide out in the spleen and reemerge months and possibly even years later in response to subsequent stressors, potentially explaining how experiences of social adversity early in life can shape one’s inflammatory landscape as an adult.” Author Daniel Cossins also reports ...