Pluripotent Until Needed

Microarrays help keep induced pluripotent stem cell lines in check, from start to finish.

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

MULTIFACETED MICROARRAYS: Researchers studying induced pluripotent stem cells are turning to microarrays to verify the genomic stability of their cells.© SAM OGDEN/SCIENCE SOURCEAs it becomes easier and easier for scientists to generate induced pluripotent stem cells (iPSCs) in the lab, validating and monitoring those cell lines will become a routine—but critical—business. The usefulness of iPSC lines for basic research and therapeutic applications lies in the stem cells’ ability to maintain an undifferentiated state; but a small fraction of iPSCs spontaneously differentiate as they’re passaged. Scientists using iPSC lines for regenerative medicine require that high genetic integrity be maintained uniformly through many cell passages. Thus, researchers have to validate and monitor any new cell line at its discovery and throughout its life in the lab—and microarrays are rising to the task.

“We’re trying to anticipate the needs of the stem cell and the iPSC community,” says Seth Taapken, cytogenetics client services manager at Madison, Wisconsin–based WiCell Research Institute, a research nonprofit previously home to the National Institute of Health’s National Stem Cell Bank. “And they’re going to need a lower-cost but very effective screen for changes,” in stem cells, he says. Currently, researchers can use sequencing, the older technique of karyotyping—a visual evaluation of the number and physical characteristics of chromosomes—or a hodgepodge of arrays to evaluate the stem cells’ genomes. But there are no standard methods, and streamlined monitoring procedures for pluripotency and differentiation are still being developed. Moreover, there are currently no accrediting or professional groups that set mandates or standards for iPSC verification.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Beth Marie Mole

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo