Pluripotent Until Needed

Microarrays help keep induced pluripotent stem cell lines in check, from start to finish.

Written byBeth Marie Mole
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

MULTIFACETED MICROARRAYS: Researchers studying induced pluripotent stem cells are turning to microarrays to verify the genomic stability of their cells.© SAM OGDEN/SCIENCE SOURCEAs it becomes easier and easier for scientists to generate induced pluripotent stem cells (iPSCs) in the lab, validating and monitoring those cell lines will become a routine—but critical—business. The usefulness of iPSC lines for basic research and therapeutic applications lies in the stem cells’ ability to maintain an undifferentiated state; but a small fraction of iPSCs spontaneously differentiate as they’re passaged. Scientists using iPSC lines for regenerative medicine require that high genetic integrity be maintained uniformly through many cell passages. Thus, researchers have to validate and monitor any new cell line at its discovery and throughout its life in the lab—and microarrays are rising to the task.

“We’re trying to anticipate the needs of the stem cell and the iPSC community,” says Seth Taapken, cytogenetics client services manager at Madison, Wisconsin–based WiCell Research Institute, a research nonprofit previously home to the National Institute of Health’s National Stem Cell Bank. “And they’re going to need a lower-cost but very effective screen for changes,” in stem cells, he says. Currently, researchers can use sequencing, the older technique of karyotyping—a visual evaluation of the number and physical characteristics of chromosomes—or a hodgepodge of arrays to evaluate the stem cells’ genomes. But there are no standard methods, and streamlined monitoring procedures for pluripotency and differentiation are still being developed. Moreover, there are currently no accrediting or professional groups that set mandates or standards for iPSC verification.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research