Power Shortages Dim Results of Many Neuroimaging Studies

Low participant numbers render the results of many studies based on brain scans unreliable, an analysis finds.

Written byAngie Voyles Askham and Spectrum
| 4 min read
illustration of multiple brain scan images
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Most neuroimaging studies have too few participants to reliably link complex behaviors to variations in brain structure or function, according to a study published March 16 in Nature. The results point to the importance of large, multisite collaborations and data-sharing to ensure that imaging studies have enough statistical power to detect real associations, the researchers say.

The median sample size for neuroimaging studies hovers at about 23 participants, the team reported, based on a survey of open-source imaging data. Studies of this size can occasionally associate brain scans and behavior by chance, but the findings vary across datasets. To yield reproducible data requires thousands of participants, the researchers found.

The analysis may explain why the field of neuroimaging has not progressed in understanding these types of correlations as quickly as some had hoped, the team says.

“We in the neuroimaging literature have labored for decades under the misguided assumption that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH