ABOVE: © ISTOCK.COM, smirkdingo
Viral vectors are efficient at transporting desired pieces of DNA into cells, and are used for, among other things, transfecting chimeric antigen receptor (CAR) genes into patient lymphocytes for CAR T cell therapy. But for some gene therapies, vectors come with “a litany of frustrations,” says Masaru Rao, a mechanical engineer at the University of California, Riverside.
Some viral vectors are limited in the size of DNA they can carry, and they integrate that DNA randomly into the genome, risking damaging mutations, Rao explains. The presence of viral particles in the body can, in certain types of gene therapies, induce an innate immune response in patients, he adds. Furthermore, the production of viral vectors, which depends on culturing cell lines, can be difficult to scale up.
“A non-viral transfection method is critical for the field,” says biomedical engineer Abraham Lee of the University of California, Irvine. ...