“Public” T-Cell Receptors From Resistant People Fend Off HIV

The receptors, found in so-called elite controllers who don’t need medications to keep the virus in check, suggest a new path toward immunotherapy.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Illustration of a blue T cell engulfing a yellow dendritic cellAn illustration of a CD4+ T cell engulfing a dendritic cell. A new study finds that specialized receptors gave CD4+ T cells the ability to kill HIV-infected dendritic cells in culture.ISTOCK, LUISMMOLINAResearchers trying to develop new treatments, or even a cure, for HIV have searched for strategies by looking to the tiny percentage of the HIV-positive population with a rare gift: the ability to naturally keep the virus’s numbers low, without a need for antiretroviral therapies. In doing so, researchers have discovered differences in the behavior of immune cells between these “elite controllers” and patients who require drugs, suggesting it could be possible to fine-tune the immune responses of noncontrollers to help them fend off the virus.

Now, researchers led by Stephanie Gras of Monash University in Victoria, Australia, report how an unusual T-cell receptor found in the CD4+ T cells of some elite controllers is able to recognize low levels of HIV and mount a response. Gras says the finding, reported today (June 8) in Science Immunology, may be good news for the prospect of developing an immunotherapy to rev up the CD4+ attack on HIV.

The research team has added “an additional cornerstone in our understanding of how HIV controllers maintain virus control,” says clinical infectious disease specialist Andrea De Maria of the University of Genoa in Italy who was not involved in the study. He adds that the findings “could open the possibility of immunotherapy, a little bit like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio